Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cell Prolif ; : e13638, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523511

RESUMO

Irritable bowel syndrome (IBS) is a widespread gastrointestinal disorder known for its multifaceted pathogenesis and varied extraintestinal manifestations, yet its implications for bone and muscle health are underexplored. Recent studies suggest a link between IBS and musculoskeletal disorders, but a comprehensive understanding remains elusive, especially concerning the role of bile acids (BAs) in this context. This study aimed to elucidate the potential contribution of IBS to bone and muscle deterioration via alterations in gut microbiota and BA profiles, hypothesizing that cholestyramine could counteract these adverse effects. We employed a mouse model to characterize IBS and analysed its impact on bone and muscle health. Our results revealed that IBS promotes bone and muscle loss, accompanied by microbial dysbiosis and elevated BAs. Administering cholestyramine significantly mitigated these effects, highlighting its therapeutic potential. This research not only confirms the critical role of BAs and gut microbiota in IBS-associated bone and muscle loss but also demonstrates the efficacy of cholestyramine in ameliorating these conditions, thereby contributing significantly to the field's understanding and offering a promising avenue for treatment.

2.
Brain Behav ; 14(2): e3438, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38409893

RESUMO

PURPOSE: The specific neurovascular compression (NVC) event responsible for the symptomatic manifestation of hemifacial spasm (HFS) remains difficult to assess accurately using magnetic resonance imaging (MRI). We aim to evaluate the MRI characteristics of HFS. METHOD: We retrospectively included patients with HFS and divided them into a test group (n = 186) and a validation group (n = 28). The presence, severity, and offending vessel type of NVC in each portion, and the orientation of the offending vessel around the facial nerve, were recorded. Conditional logistic regression analyses were performed to evaluate correlations using test group. The validation group was used to verify whether our findings improved diagnostic performance. RESULTS: Deformity in the proximal cisternal segment was significantly correlated with HFS occurrence (odds ratio [OR]: 256.58, p = .002), whereas contact was not (p = .233). Both contact and deformity in the root detachment point (OR: 19.98 and 37.22, p < .001 and p = .013, respectively) or attached segment (OR: 4.99 and 252.52, p = .001 and p < .001, respectively) were significantly correlated with HFS occurrence. Our findings improved specificity, positive predictive value, and accuracy of diagnosis than conventional diagnostic methods. The vertebral artery predominantly compress the facial nerve in the inferior-anterior position, the anterior inferior cerebellar artery predominantly in the inferior position, the posterior inferior cerebellar artery predominantly in the inferior position, vein predominantly in the posterior-superior position. CONCLUSIONS: This study further demonstrates that within the susceptible portion of facial nerve, different portions of the nerve respond differently to NVC. Each offending vessel has its own preferred conflict orientation. Our study offers reference for neurosurgeons in diagnosis and treatment.


Assuntos
Espasmo Hemifacial , Humanos , Espasmo Hemifacial/diagnóstico por imagem , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Nervo Facial/diagnóstico por imagem , Fatores de Risco
3.
Biomater Sci ; 12(7): 1761-1770, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38375617

RESUMO

The conundrum of wound healing has transformed into an imminent medical challenge. Presently, cell-free therapy centered around extracellular vesicles (EVs) has become a pivotal and promising research avenue. EVs generated from three-dimensional (3D) cell cultures have been previously established to possess enhanced tissue regeneration potential, although the underlying mechanisms remain elusive. In this study, we observed higher expression of annexin ANXA1 in 3D-cultured EVs. Remarkably, 3D-EVs with elevated ANXA1 expression demonstrated a more potent capacity to promote macrophage polarization from the M1 phenotype to the M2 phenotype. Concurrently, they exhibited superior abilities to enhance cell migration and tube formation, facilitating expedited wound healing in animal experiments. Conversely, the application of an ANXA1 inhibitor counteracted the positive effects of 3D-EVs. Taken together, our data validate that extracellular vesicles derived from 3D-cultured MSCs regulate macrophage polarization via ANXA1, thereby fostering wound healing.


Assuntos
Vesículas Extracelulares , Ativação de Macrófagos , Animais , Cicatrização , Vesículas Extracelulares/metabolismo , Técnicas de Cultura de Células , Movimento Celular
4.
Front Microbiol ; 15: 1323887, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410396

RESUMO

Introduction: The pivotal roles of both abundant and rare bacteria in ecosystem function are widely acknowledged. Despite this, the diversity elevational patterns of these two bacterial taxa in different seasons and influencing factors remains underexplored, especially in the case of rare bacteria. Methods: Here, a metabarcoding approach was employed to investigate elevational patterns of these two bacterial communities in different seasons and tested the roles of soil physico-chemical properties in structuring these abundant and rare bacterial community. Results and discussion: Our findings revealed that variation in elevation and season exerted notably effects on the rare bacterial diversity. Despite the reactions of abundant and rare communities to the elevational gradient exhibited similarities during both summer and winter, distinct elevational patterns were observed in their respective diversity. Specifically, abundant bacterial diversity exhibited a roughly U-shaped pattern along the elevation gradient, while rare bacterial diversity increased with the elevational gradient. Soil moisture and N:P were the dominant factor leading to the pronounced divergence in elevational distributions in summer. Soil temperature and pH were the key factors in winter. The network analysis revealed the bacteria are better able to adapt to environmental fluctuations during the summer season. Additionally, compared to abundant bacteria, the taxonomy of rare bacteria displayed a higher degree of complexity. Our discovery contributes to advancing our comprehension of intricate dynamic diversity patterns in abundant and rare bacteria in the context of environmental gradients and seasonal fluctuations.

5.
Tree Physiol ; 44(1)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-37847610

RESUMO

Leaf respiration in the light (Rlight) is crucial for understanding the net CO2 exchange of individual plants and entire ecosystems. However, Rlight is poorly quantified and rarely discussed in the context of the leaf economic spectrum (LES), especially among woody species differing in plant functional types (PFTs) (e.g., evergreen vs. deciduous species). To address this gap in our knowledge, Rlight, respiration in the dark (Rdark), light-saturated photosynthetic rates (Asat), leaf dry mass per unit area (LMA), leaf nitrogen (N) and phosphorus (P) concentrations, and maximum carboxylation (Vcmax) and electron transport rates (Jmax) of 54 representative subtropical woody evergreen and deciduous species were measured. With the exception of LMA, the parameters quantified in this study were significantly higher in deciduous species than in evergreen species. The degree of light inhibition did not significantly differ between evergreen (52%) and deciduous (50%) species. Rlight was significantly correlated with LES traits such as Asat, Rdark, LMA, N and P. The Rlight vs. Rdark and N relationships shared common slopes between evergreen and deciduous species, but significantly differed in their y-intercepts, in which the rates of Rlight were slower or faster for any given Rdark or N in deciduous species, respectively. A model for Rlight based on three traits (i.e., Rdark, LMA and P) had an explanatory power of 84.9%. These results show that there is a link between Rlight and the LES, and highlight that PFTs is an important factor in affecting Rlight and the relationships of Rlight with Rdark and N. Thus, this study provides information that can improve the next generation of terrestrial biosphere models (TBMs).


Assuntos
Ecossistema , Plantas , Fotossíntese , Respiração , Transporte de Elétrons , Folhas de Planta , Árvores
6.
Oecologia ; 204(1): 59-69, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091103

RESUMO

Rising temperatures pose a threat to the stability of climate regulation by carbon metabolism in subtropical forests. Although the effects of temperature on leaf carbon metabolism traits in sun-exposed leaves are well understood, there is limited knowledge about its impacts on shade leaves and the implications for ecosystem-climate feedbacks. In this study, we measured temperature response curves of photosynthesis and respiration for 62 woody species in summer (including both evergreen and deciduous species) and 20 evergreen species in winter. The aim was to uncover the temperature dependence of carbon metabolism in both sun and shade leaves in subtropical forests. Our findings reveal that shade had no significant effects on the mean optimum photosynthetic temperatures (TOpt) or temperature range (T90). However, there were decreases observed in mean stomatal conductance, mean area-based photosynthetic rates at TOpt and 25 °C, as well as mean area-based dark respiration rates at 25 °C in both evergreen and deciduous species. Moreover, the respiration-temperature sensitivity (Q10) of sun leaves was higher than that of shade leaves in winter, with the reverse being true in summer. Leaf economics spectrum traits, such as leaf mass per area, and leaf concentration of nitrogen and phosphorus across species, proved to be good predictors of TOpt, T90, mass-based photosynthetic rate at TOpt, and mass-based photosynthetic and respiration rate at 25 °C. However, Q10 was poorly predicted by these leaf economics spectrum traits except for shade leaves in winter. Our results suggest that model estimates of carbon metabolism in multilayered subtropical forest canopies do not necessitate independent parameterization of T90 and TOpt temperature responses in sun and shade leaves. Nevertheless, a deeper understanding and quantification of canopy variations in Q10 responses to temperature are necessary to confirm the generality of temperature-carbon metabolism trait responses and enhance ecosystem model estimates of carbon dynamics under future climate warming.


Assuntos
Ecossistema , Árvores , Temperatura , Árvores/fisiologia , Folhas de Planta/fisiologia , Florestas , Fotossíntese/fisiologia
7.
Int Immunopharmacol ; 127: 111438, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159552

RESUMO

Acute pancreatitis (AP) is a common inflammatory response that occurs in the pancreas with mortality rates as high as 30 %. However, there is still no consistent and effective treatment for AP now. MicroRNA-148 was reported to be involved in AP through IL-6 signaling pathway. Therefore, we aimed to further explore the detailed mechanisms of AP, to develop more therapeutic approach for AP. Exosomes were isolated from peripheral blood mononuclear cells of 20 AP patients and 20 healthy volunteers to evaluate the abnormally expressed miRNA. Then pancreatic acinar cells (PACs) were transfected with retrovirus to overexpress miR-148a/miR-551b-5p to evaluate their function. Both miR-148a and miR-551b-5p were highly expressed in AP patients than these in healthy cases. Then overexpressing miR-551b-5p in PACs could regulate autophagy through directly binding to Baculoviral IAP Repeat Containing 6, leading to the increased secretions of interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) through interleukin-1 (IL-1) signaling pathway. Moreover, overexpressing miR-148a in PACs could decrease the secretions of IL-1ß and IL-18 to modulate autophagy. The exosomal miRNA-148a and miRNA-551b-5p derived from peripheral blood mononuclear cells of AP patients may two-way mediate autophagy damage through IL-6/STAT3 signaling pathway, which participated in the AP pathogenesis. Our findings may provide new targets for the diagnosis and treatment of AP.


Assuntos
MicroRNAs , Pancreatite , Humanos , Interleucina-18 , Doença Aguda , Interleucina-6 , Leucócitos Mononucleares , MicroRNAs/genética , Interleucina-1beta , Autofagia
8.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2305-2313, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37899094

RESUMO

To reveal the variation of leaf nutrient utilization strategies with altitude gradient in subtropical mountain broadleaved trees, 44 species of broadleaved trees at different altitudes (1400, 1600 and 1800 m) in Wuyi Mountains were selected to measure nutrient content, stoichiometric ratio, and nutrient resorption efficiency of green and senescent leaves, and analyzed their allometric growth relationships. The results showed that nitrogen (N) and phosphorus (P) contents in green leaves were significantly higher than those in senescent leaves, which increased with the increases of altitude. The average values of phosphorus resorption efficiency (PRE) and nitrogen resorption efficiency (NRE) were 48.3% and 34.9%, respectively. PRE was significantly higher than NRE. There was no significant difference in nutrient resorption efficiency with altitude. NRE had positive isokinetic growth with and mature leaf N content at low altitude (1400 m) and negative allometry growth with senescent leaf N content at high altitude (1800 m). PRE and N and P contents of senescent leaves had negative isokinetic growth at low altitude (1400 m) and negative allometry growth at high altitudes (1600 and 1800 m). PRE-NRE allometric growth index was 0.95 at each altitude. The nutrient contents of green and senescent leaves increased with the increases of altitude, but altitude did not affect nutrient resorption efficiency. Plants preferred to re-absorbed P from senescent leaves. Nutrient resorption efficiency of leaves at high altitude affected the nutrient status of senescent leaves.


Assuntos
Altitude , Árvores , China , Nitrogênio , Nutrientes , Fósforo , Folhas de Planta
9.
Ren Fail ; 45(2): 2271104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860932

RESUMO

This study aimed to develop and validate a combined nomogram model based on superb microvascular imaging (SMI)-based deep learning (DL), radiomics characteristics, and clinical factors for noninvasive differentiation between immunoglobulin A nephropathy (IgAN) and non-IgAN.We prospectively enrolled patients with chronic kidney disease who underwent renal biopsy from May 2022 to December 2022 and performed an ultrasound and SMI the day before renal biopsy. The selected patients were randomly divided into training and testing cohorts in a 7:3 ratio. We extracted DL and radiometric features from the two-dimensional ultrasound and SMI images. A combined nomograph model was developed by combining the predictive probability of DL with clinical factors using multivariate logistic regression analysis. The proposed model's utility was evaluated using receiver operating characteristics, calibration, and decision curve analysis. In this study, 120 patients with primary glomerular disease were included, including 84 in the training and 36 in the test cohorts. In the testing cohort, the ROC of the radiomics model was 0.816 (95% CI:0.663-0.968), and the ROC of the DL model was 0.844 (95% CI:0.717-0.971). The nomogram model combined with independent clinical risk factors (IgA and hematuria) showed strong discrimination, with an ROC of 0.884 (95% CI:0.773-0.996) in the testing cohort. Decision curve analysis verified the clinical practicability of the combined nomogram. The combined nomogram model based on SMI can accurately and noninvasively distinguish IgAN from non-IgAN and help physicians make clearer patient treatment plans.


Assuntos
Aprendizado Profundo , Glomerulonefrite por IGA , Microvasos , Nomogramas , Humanos , Glomerulonefrite por IGA/complicações , Glomerulonefrite por IGA/diagnóstico por imagem , Hematúria , Glomérulos Renais , Estudos Retrospectivos , Microvasos/diagnóstico por imagem , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/patologia , Biópsia
10.
Oecologia ; 202(4): 845-854, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37624444

RESUMO

Cortex radius (CR) and stele radius (SR) are important functional traits associated with the nutrient acquisition and transport functions of fine roots, respectively. However, for developmental and anatomical reasons, the resource acquisition-transport relationship of fine roots is expected to be different for different root orders. To address this issue, critical fine root anatomical traits were examined for the first three orders of roots of 59 subtropical woody plants. Designating the most distal fine roots as order one, SR scaled isometrically with respect to root radius (RR) (i.e., SR ∝ RR1.0) in the three root orders, whereas CR scaled allometrically with respect to RR (i.e., CR ∝ RR>1.0) with the numerical values of scaling exponents increasing significantly with increasing root orders thereby indicating a disproportional increase in CR with increasing root orders. There were also differences between normalized root tissue (CR/RR and SR/RR) and RR in different root orders. A negative isometric relationship (i.e., SR/RR ∝ RR-1.0) existed between SR/RR and RR in three order roots, whereas the allometric exponent between CR/RR and RR increased with root order (from 0.88 to 1.55). Collectively, the data indicate that root anatomical and functional traits change as a function of RR and that these changes need to be considered when modeling fine root resource acquisition-transport functions.

11.
Sci Total Environ ; 903: 166177, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37572896

RESUMO

The evergreen broad-leaf forest is subtropical zonal vegetation in China, and its species diversity and stability are crucial for maintaining forest ecosystem functions. The region is generally affected by global changes such as high levels of nitrogen deposition. Therefore, it is critical to determine the adaptation strategies of subtropical dominant species under nitrogen addition. Here, we conducted two-year field experiments with nitrogen addition levels as 0 kg N ha-1 yr-1 (CK), 50 kg N ha-1 yr-1 (LN) and 100 kg N ha-1 yr-1 (HN). We investigated the effects of nitrogen addition on leaf functional traits (including nutrition, structural and physiological characteristics) of five dominant species in subtropical evergreen broad-leaf forest. Results suggested that the effect of nitrogen addition on leaf functional traits was species-specific. Contrary to Rhododendron delavayi and Eurya muricata, Quercus glauca, Schima superba and Castanopsis eyrei all responded more to the HN treatment than LN treatment. Compared to other leaf functional traits, leaf anatomical structure traits had the highest average plasticity (0.246), and the relative effect of leaf photosynthetic property was highest (7.785) under N addition. Among the five species, S. superba was highest in terms of the index of plasticity for leaf functional traits under nitrogen addition, followed by Q. glauca, E. muricata, C. eyrei and R. delavayi. The major leaf functional traits representing the economic spectrum of leaves (LES) showed resource acquisitive strategy (high SLA, LNC, LPC, Pn) and conservative strategy (high LTD, LDMC, C/N) clustering on the opposite ends of the PCA axis. The PCA analysis indicated that species with high leaf plasticity adopt resource acquisitive strategy (S. superba and Q. glauca), whereas species with low leaf plasticity adopt resource conservative strategy (E. muricata, C. eyrei and R. delavayi). In aggregate, resource-acquisitive species benefit from nitrogen addition more than resource-conservative species, suggesting that S. superba and Q. glauca will occupy the dominant position in community succession under persistently elevated nitrogen deposition.

12.
Front Plant Sci ; 14: 1187704, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441171

RESUMO

Foliage leaves are the primary photosynthetic organ of the majority of vascular plants, and their area vs. biomass scaling relationships provide valuable insights into the capacity and investment in light interception, which is critical to plant growth and performance. The "diminishing returns" hypothesis (DRH), which is based primarily on data from gymnosperms and angiosperms, posits that leaf (lamina) area scales with leaf dry mass. on average with a scaling exponent less than 1.0. However, it remains uncertain whether DRH applies to ferns or whether ecological factors affect the scaling exponents governing fern leaf morphometrics. To address this issue, 182 individuals of 28 subtropical ferns species were studied at low, medium, and high elevations (i.e., 600 m, 900 m, and 1200 m, respectively) in Mount Wuyi National Park, Jiangxi Province, China. The scaling relationships between leaf area and leaf biomass for individual and total leaf of ferns at different elevations were examined by using standardized major axis regression protocols. Analyses of the 28 fern species (using Blomberg K-value protocols) indicated no phylogenetic biases among the species compositions of the three different elevations. In addition, at the individual plant level, individual leaf area (ILA) did not differ significantly among the three different elevations (P > 0.05). However, individual leaf mass (ILM) was significantly higher at 900m than at 1200m (P < 0.05), resulting in a significantly higher leaf mass per area (LMA) at the 900m elevation than at the 600m and 1200m elevations (P < 0.05). The ILA and ILM at the 900m elevation were significantly higher than at the 600m elevation (P < 0.05). At the species level, ILA and ILM did not differ significantly among the three elevations (P > 0.05). The total leaf area per individual (TLA) did not differ significantly across the different elevations (P > 0.05). However, total leaf mass per individual (TLM) did differ significantly (P < 0.05). At the individual plant level, the scaling exponents for ILA vs. ILM and TLA vs. TLM at the three different elevations were all significantly less than 1.0 (P < 0.05), which was consistent with the DRH. At the species level, the scaling exponents for the ILA vs. ILM were significantly less than 1.0 at the middle and high elevations, but not at the low elevation. The scaling exponents of the TLA and TLM were numerically highest in the middle elevation, and all were less than 1.0 for the three elevations. These results indicate that the scaling relationships of leaf area versus mass of subtropical ferns at different elevations support the DRH hypothesis. The study further informs our understanding of the resource allocation strategies of an ancient and diverse plant lineage.

13.
Quant Imaging Med Surg ; 13(6): 3948-3961, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284095

RESUMO

Background: Hepatocellular carcinoma (HCC) with microvascular invasion (MVI) has a poor prognosis, is prone to recurrence and metastasis, and requires more complex surgical techniques. Radiomics is expected to enhance the discriminative performance for identifying HCC, but the current radiomics models are becoming increasingly complex, tedious, and difficult to integrate into clinical practice. The purpose of this study was to investigate whether a simple prediction model using noncontrast-enhanced T2-weighted magnetic resonance imaging (MRI) could preoperatively predict MVI in HCC. Methods: A total of 104 patients with pathologically confirmed HCC (training cohort, n=72; test cohort, n=32; ratio, about 7:3) who underwent liver MRI within 2 months prior to surgery were retrospectively included. A total of 851 tumor-specific radiomic features were extracted on T2-weighted imaging (T2WI) for each patient using AK software (Artificial Intelligence Kit Version; V. 3.2.0R, GE Healthcare). Univariate logistic regression and least absolute shrinkage and selection operator (LASSO) regression were used in the training cohort for feature selection. The selected features were incorporated into a multivariate logistic regression model to predict MVI, which was validated in the test cohort. The model's effectiveness was evaluated using the receiver operating characteristic and calibration curves in the test cohort. Results: Eight radiomic features were identified to establish a prediction model. In the training cohort, the area under the curve, accuracy, specificity, sensitivity, and positive and negative predictive values of the model for predicting MVI were 0.867, 72.7%, 84.2%, 64.7%, 72.7%, and 78.6%, respectively; while in the test cohort, they were 0.820, 75%, 70.6%, 73.3%, 75%, and 68.8%, respectively. The calibration curves displayed good consistency between the prediction of MVI by the model and actual pathological results in both the training and validation cohorts. Conclusions: A prediction model using radiomic features from single T2WI can predict MVI in HCC. This model has the potential to be a simple and fast method to provide objective information for decision-making during clinical treatment.

15.
Front Plant Sci ; 14: 1137487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082346

RESUMO

Carbon absorption capability and morphological traits are crucial for plant leaf function performance. Here, we investigated the five bamboos at different elevations in Wuyi Mountain to clarify how the leaf trait responds to the elevational gradient and drives the photosynthetic capacity variations. The Standardized Major Axis Regression (SMA) analyses and the Structural Equation Model (SEM) are applied to identify how the bamboo leaf trait, including the ratio of leaf width to length (W/L), leaf mass per area (LMA), photosynthesis rates (Pn), leaf nitrogen, and phosphorus concentration (Leaf N and Leaf P) response to elevation environment, and the driving mechanism of Pn changes. Across the five bamboo species, our results revealed that leaf P scaled isometrically with respect to W/L, leaf N scaled allometrically as the 0.80-power of leaf P, and leaf N and leaf P scaled allometrically to Pn, with the exponents of 0.58 and 0.73, respectively. Besides, the SEM result showed altitude, morphological trait (W/L and LMA), and chemical trait (leaf N and leaf P) could together explain the 44% variations of Pn, with a standard total effect value of 70.0%, 38.5%, 23.6% to leaf P, leaf N, and W/L, respectively. The five bamboo species along the different elevational share an isometric scaling relationship between their leaf P and W/L, providing partial support for the general rule and operating between morphological and chemical traits. More importantly, the leaf W/L and leaf P as the main trait that affects leaf area and P utilization in growth and thus drives bamboo leaf photosynthetic capacity variations in different elevations.

16.
Front Bioeng Biotechnol ; 10: 1007960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277398

RESUMO

Hypoxia, as a typical hallmark of the tumour microenvironment (TME), has been verified to exist in most malignancies and greatly hinders the outcome of tumour treatments, including chemotherapy, photodynamic therapy, radiotherapy, and immunotherapy. Various approaches to alleviate tumour hypoxia have been reported. Among them, biomimetic nanomaterial-facilitated tumour oxygenation strategies, based on the engagement of human endogenous proteins, red blood cells, the cell membrane, and catalase, are the most impressive due to their excellent tumour active-targeting ability and superior tumour-selective capability, which, however, have not yet been systematically reviewed. Herein, we are ready to describe the current progress in biomimetic nanomaterial-facilitated tumour oxygenation strategies and corresponding improvements in tumour treatment outputs. In this review, the underlying mechanism behind the superior effect of these biomimetic nanomaterials, compared with other materials, on alleviating the hypoxic TME is highlighted. Additionally, the ongoing problems and potential solutions are also discussed.

17.
Drug Deliv ; 29(1): 2995-3008, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36104946

RESUMO

To increase the antitumor drug concentration in the liver tumor site and improve the therapeutic effects, a functionalized liposome (PPP-LIP) with tumor targetability and enhanced internalization after matrix metalloproteinase-2 (MMP2)-triggered cell-penetrating peptide (TATp) exposure was modified with myrcludex B (a synthetic HBV preS-derived lipopeptide endowed with compelling liver tropism) for liver tumor-specific delivery. After intravenous administration, PPP-LIP was mediated by myrcludex B to reach the hepatocyte surface. The MMP2-overexpressing tumor microenvironment deprotected PEG, exposing it to TATp, facilitating tumor penetration and subsequent efficient destruction of tumor cells. In live imaging of small animals and cellular uptake, PPP-LIP was taken up much more than typical unmodified liposomes in the ICR mouse liver and liver tumor cells. Hydroxycamptothecin (HCPT)-loaded PPP-LIP showed a better antitumor effect than commercially available HCPT injections among MTT, three-dimensional (3 D) tumor ball, and tumor-bearing nude mouse experiments. Our findings indicated that PPP-LIP nanocarriers could be a promising tumor-targeted medication delivery strategy for treating liver cancers with elevated MMP2 expression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Hepatócitos , Lipossomos , Neoplasias Hepáticas/tratamento farmacológico , Metaloproteinase 2 da Matriz , Camundongos , Camundongos Endogâmicos ICR , Microambiente Tumoral
18.
Plant Cell Environ ; 45(11): 3205-3218, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36029253

RESUMO

The plant economics spectrum describes the trade-off between plant resource acquisition and storage, and sheds light on plant responses to environmental changes. However, the data used to construct the plant economics spectrum comes mainly from seed plants, thereby neglecting vascular non-seed plant lineages such as the ferns. To address this omission, we evaluated whether a fern economics spectrum exists using leaf and root traits of 23 fern species living under three subtropical forest conditions differing in light intensity and nutrient gradients. The fern leaf and root traits were found to be highly correlated and formed a plant economics spectrum. Specific leaf mass and root tissue density were found to be on one side of the spectrum (conservative strategy), whereas photosynthesis rate, specific root area, and specific root length were on the other side of the spectrum (acquisitive strategy). Ferns had higher photosynthesis and respiration rates, and photosynthetic nitrogen-use efficiency under high light conditions and higher specific root area and lower root tissue density in high nutrient environments. However, environmental changes did not significantly affect their resource acquisition strategies. Thus, the plant economics spectrum can be broadened to include ferns, which expands its phylogenetic and ecological implications and utility.


Assuntos
Gleiquênias , Florestas , Nitrogênio , Fotossíntese/fisiologia , Filogenia , Folhas de Planta/fisiologia , Plantas
19.
Front Cardiovasc Med ; 9: 895916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865386

RESUMO

Menopause is associated with dyslipidemia and an increased risk of cardiovascular disease, the underlying mechanism of dyslipidemia is attributed to an insufficiency of estrogen. In this study, we find that estrogen mediates an atherosclerotic-protective action via estrogen receptor alpha/SREBP-1 signaling. Increased lipid accumulation and low-density lipoprotein (LDL)-uptake in HepG2 cells and THP-1 macrophages were induced by treatment of mixed hyperlipidemic serum from postmenopausal women; 17ß-estradiol [estrogen (E2)] (10 nM) administration significantly improved hyperlipidemic profiles, relieved fatty-liver damage and attenuated the plaque area in the heart chamber of high-fat diet (HFD)-fed ovariectomized (OVX) ApoE -/ - mice. Expression of sterol regulatory element-binding protein (SREBP)-1 mRNA of circulating leukocytes in postmenopausal women was strongly correlated to the serum E2 level. Exploration of data from the Gene Expression Profiling Interactive Analysis (GEPIA) database revealed that expression of SREBP-1 protein correlated to expression of estrogen receptor (ESR)α protein in the liver, blood and in normal tissue. Genetic overexpression/inhibition of ESRα resulted in increased/decreased SREBP-1 expression as well as attenuated/deteriorated lipid deposition in vitro. An inhibitor of the protein kinase B/mammalian target of rapamycin (AKT/mTOR) pathway, AZD8055, abolished ESRα-induced SREBP-1 expression in HepG2 cells. Moreover, E2 and statin co-treatment significantly reduced lipid accumulation in vitro and hindered the progression of atherosclerosis and fatty-liver damage in OVX ApoE -/ - mice. Collectively, our results suggest that estrogen could exerted its atherosclerotic-protective action via ESRα/SREBP-1 signaling. E2 might enhance the cellular sensitivity of statins and could be used as a novel therapeutic strategy against atherosclerotic disorders in postmenopausal women.

20.
Ying Yong Sheng Tai Xue Bao ; 33(5): 1207-1214, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35730078

RESUMO

Based on the distribution records of Cunninghamia lanceolata, we used the maximum Entropy (MaxEnt) model and geographic information system (GIS) methods, combined with environmental factors such as climate and terrain, to predict the potential distribution areas suitable for C. lanceolata under current and future climate scenarios. The results showed that annual precipitation was the most important factor driving the distribution of C. lanceolata. Under the current climate scenario, the total area of suitable for C. lanceolata growth was about 3.28 million km2, accounting for about 34.5% of the total land area of China. Among all the suitable areas, the lowly, intermediately, and highly suitable areas accounted for 18.3%, 29.7% and 52.0% of the total, respectively. Under future climate scenarios, the suitable area of C. lanceolata would increase, showing a clear trend of northward expansion in China. A concentrated and contiguous distribution region highly suitable for C. lanceolata would appear in the humid subtropical areas of southern China. The model was tested by the receiver operating characteristic curve (ROC). The average area under the curve of ROC of the training set was 0.91, showing high reliability.


Assuntos
Mudança Climática , Cunninghamia , China , Ecossistema , Entropia , Previsões , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...